Investigation of multi-modal interface features for adaptive automation of a human-robot system
نویسندگان
چکیده
The objective of this research was to assess the effectiveness of using a multi-modal interface for adaptive automation (AA) of human control of a simulated telerobotic (remote-control, semi-autonomous robotic) system. We investigated the use of one or more sensory channels to cue dynamic control allocations to a human operator or computer, as part of AA, and to support operator system/situation awareness (SA) and performance. It was expected that complex auditory and visual cueing through system interfaces might address previously observed SA decrements due to unannounced or unexpected automation-state changes as part of adaptive system control. AA of the telerobot was based on a predetermined schedule of manualand supervisory-control allocations occurring when operator workload changes were expected due to the stages of a teleoperation task. The task involved simulated underwater mine disposal and 32 participants were exposed to four types of cueing of task-phase and automation-state changes including icons, earcons, bi-modal (combined) cues and no cues at all. Fully automated control of the telerobot combined with human monitoring produced superior performance compared to completely manual system control and AA. Cueing, in general, led to better performance than none, but did not appear to completely eliminate temporary SA deficits due to changes in control and associated operator reorienting. Bi-modal cueing of dynamic automation-state changes was more supportive of SA than modal (single sensory channel) cueing. The use of icons and earcons appeared to produce no additional perceived workload in comparison no cueing. The results of this research may serve as an applicable guide for the design of human–computer interfaces for real telerobotic systems, including those used for military tactical operations, which support operator achievement and maintenance of SA and promote performance in using AA. r 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملOptimizing the Torque of Knee Movements of a Rehabilitation Robot
The aim of this study is to employ the novel Adaptive Network-based Fuzzy Inference System to optimize the torque applied on the knee link of a rehabilitation robot. Given the special conditions of stroke or spinal cord injury patients, devices with minimum error are required for performing the rehabilitation exercises. After examining the anthropometric data tables of human body, parameters su...
متن کاملA Novel Robust Adaptive Trajectory Tracking in Robot Manipulators
In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...
متن کاملA New Single-Display Intelligent Adaptive Interface for Controlling a Group of UAVs
The increasing use of unmanned aerial vehicles (UAVs) or drones in different civil and military operations has attracted attention of many researchers and science communities. One of the most notable challenges in this field is supervising and controlling a group or a team of UAVs by a single user. Thereupon, we proposed a new intelligent adaptive interface (IAI) to overcome to this challenge. ...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Man-Machine Studies
دوره 64 شماره
صفحات -
تاریخ انتشار 2006